Design of Mineral Sand Surge Bin to deliver consistent Slurry Density

Project Scope
Bulk Material: Mineral sand
Equipment: 220 - 1150 m³ Surge Bin
Problem: Historically, mineral sand surge bins were designed without considering the mode of flow within the bin. The mode of flow was inevitably funnel flow where the slurry moved down a central channel “rathole” to the discharge point. This resulted in an inconsistent slurry density at the discharge and reduction of process efficiency. In addition, bins “rathole” resulted in particulate solids slumping causing blockages.

TBS Solution
The solution proposed was to design the bin to be mass-flow where the slurry flows in mass down the hopper walls. This results in a consistent slurry density at the discharge due to a consistent consolidation stress created by an arch stress field existing in the hopper. In order to design the bin with the appropriate hopper angles to achieve mass-flow, flow property testing was undertaken on the mineral sand slurry utilising a Jenike shear tester with the test cell submerged to simulate conditions within the surge bin as shown in Figure 1. The design developed in collaboration with Mineral Technologies is shown in Figure 2 with the essential elements illustrated in Figure 3.

TUNRA and Mineral Technologies have designed units ranging in size from 5 m³ to 1150 m³ which are marketed as Lyons Feed Control Units.

Project Outcomes
The surge bin operated in mass-flow and delivered a consistent slurry density at the discharge. Figure 4 shows the process variables. The variables of interest are the Primary Spirals mass flow and density which remain consistent apart from a step change requested by the process operator.

Figure 1: Jenike Shear Cell with submerged Cell

Figure 2: A Surge Bin in Service

Figure 3: Surge Bin Design

Figure 4: Process Variables


If you want to learn more about our service range or if you wish to make an enquiry, please contact:

TUNRA BULK SOLIDS
Dr Stephen Wiche
Newcastle Institute for Energy and Resources (NIER)
The University of Newcastle
Off Vale Street
Shortland NSW 2307, Australia
Email: enquiries@bulksolids.com.au
Ph.: +61 2 4033 9055
Fax: +61 2 4033 9044
http://www.bulksolids.com.au